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Abstract—In this paper, we introduce SimpledCLIP, a composite model
for recovering human 3D poses from text using CLIP. We provide an
overview of the models we use in building SimpledCLIP, and how we
use it to try to solve the task at hand. We build from the ground up,
starting with the most basic settings. We also shed light on what hinders
the performance of our model.

We would like to thank our supervisor, Benoit Guillard, for orienting
and advising us throughout this project.

I. INTRODUCTION

Training extremely large and deep neural networks for supervised
learning tasks often requires tremendous amounts of adequate quality
labeled data on top of huge computational resources. To mitigate both
issues, we explore the possibility of exploiting state-of-the-art 2D pre-
trained such gigantic neural networks to solve 3D tasks via transfer
learning.

In this paper, we focus on the particular task of recovering human
3D poses from prompts, that is the retrieval of 3D human body
parameters that are described in text. We do so by maximizing the
proximity in a joint embedding space of the prompt and a 2D image
of the body. We use SMPL as a low-dimension parameterization of
3D human bodies, a differentiable renderer to get 2D images of a 3D
body mesh, and CLIP to embed text prompts and images in a joint
space. Since all components are differentiable, we can use gradient
descent to directly optimize the body parameters.

Although SimpledCLIP does not end up living up to our expecta-
tions compared to other related works such as Text2Mesh [1] since
it is not yet able to recover 3D poses, we believe that our work may
pave the way for further research in this area.

II. MODELS
A. SMPL: Skinned Multi-Person Linear model [2|]

SMPL models the human body in 3D. It represents the body as a
set of joints linked by vertices and wrapped in a closed volume of
connected triangular faces that materialize the body’s morphology.
To create a mesh using SMPL, one needs to specify the pose
parameter §# € R" that controls the angles of the joints and the
shape parameter 3 € R'C that controls the enclosed volume and
the vertices’ lengths. SMPL is data-driven: it constructs meshes
from scans of real people, in contrast with a handcrafted approach.
We use a PyTorch implementation of SMPL that allows automatic
differentiation through it with respect to these parameters (6, 3).

B. DR: Differentiable Renderer[3|]

A renderer takes a snapshot of a 3D scene in the form of a 2D
image, just like a camera does in real life. In a nutshell, it uses a
shading algorithm to figure out the effect of light sources on the colors
of the objects in the scene depending on their material, followed by
a rasterization algorithm to compute the color of each image pixel
after projecting the 3D scene on the plane of the camera. We use

a PyTorch3D implementation of this renderer so as to automatically
differentiate through it.

C. CLIP[4]: Contrastive Learning Image Pretraining model

CLIP is a state-of-the-art model that learns a joint euclidean space
for both 2D images and texts. The embedding of a text is close to
that of an image as long as the former describes the content of the
latter.

We rely on CLIP as our 2D component to recover 3D poses
due to its astonishing zero-shot performance on a variety of image
recognition tasks on ImageNet: it still provides close embeddings for
text/image inputs unseen at training time. This property is particularly
interesting for transfer learning since the renderings of our 3D scenes
and the prompts of interest that describe the human 3D pose may be
unseen at CLIP’s training.

Since CLIP is a combination of two neural networks implemented
in PyTorch, we can differentiate through them. The version we use
operates on 244x244 images.

Adapting CLIP’s Input: CLIP was originally designed to take
PIL images, not image tensors, which hinders the backpropagation
through the composition of the three models (SMPL, Renderer, CLIP).
To avoid that issue, we reimplemented CLIP’s image preprocessing
step so that it directly operates on image tensors through which we
can automatically differentiate.

D. SimpledCLIP

We call SimpledCLIP the pipeline of the three models, correspond-
ing to the design in figure [I] below. SimpledCLIP takes a prompt
describing the pose of interest and the constituents of a 3D scene.
The scene, which contains the mesh, is then rendered as a 2D image
which is fed together with the prompt to CLIP. The latter outputs
the prompt and image embeddings which we denote throughout this
paper by u € R*'? and v € R*'? respectively.

SimpledCLIP has many hyperparameters, regrouped under the
notation {2, mainly consisting of:

o Mesh Hyperparameters: texture, gender.

o Scene: lights, materials, blending.

« Rendering Camera(s): type, position, the field of view, frustum
...etc.

« Rendering Shader: Phong, Gouraud, Flat, or Silhouette.
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Fig. 1. SimpledCLIP’s design.



III. RECOVERING THE PROMPTED 3D POSE
A. Method

Given the strong motivation to rely on CLIP and what is expected
from it, namely that the cosine similarity between the prompt
embedding u and the rendered scene’s embedding v is large if the
prompt describes the pose in the image among other decor details,
recovering the 3D pose prompted to SimpledCLIP amounts to solving
the following optimization problem:

0* = argming L(u™,v(6;Q, 8))

CLIP is pretrained and is used as such, so its weights are not
optimized with respect to.

The prompt embedding u can be regarded as a hyperparameter
since it solely depends on the prompt which is fixed during opti-
mization, and so we denote it u*.

Although in theory, we could optimize with respect to both 6 and
B, we noticed that | 3|z did not vary much during optimization unlike
|0|F, aside from not causing any significant improvement during
optimization. As we aim to recover 3D poses, our interest shifted
to optimizing with respect to 6 only for a fixed S* portraying a
reasonable human silhouette.

We optimize using SGD-based algorithms, where we start with an
all-zero 0 that is updated every full pass (forward pass into backward
pass through the entire model).

B. The Optimization Objective L

In our experiments, we use the following optimization objectives:

o Cosine Distance, Lep(v,u®) = 1 — %, which is by
CLIP’s definition assumed to be smaller the more the image
and prompt are semantically identical as explained in section
=ad

o Inner Product Loss, Lip(v,u*) = 3|v|r— < u*,v > for
A > 0: any positively co-linear with u* non-zero vector of
finite norm v maximizes the 2 vectors’ cosine similarity. Basic
calculus shows that V,L;p =0 < v* = % and Vgpr >0
since A > 0.
L;p is a smooth and strictly convex loss in terms of v in contrast
with Lop at the cost of fixing |[v*|# for an “optimal” v*.

IV. PROMPT CONSTRUCTION SCHEME

As of today, there is no generic way to build effective prompts for
CLIP, or at least none that we are aware of. A few tricks shared by
the community that have been empirically “proven” to work better
include describing the scene of the image, not just the details we aim
to recognize within that image. In light of that, we build our prompts
as a concatenation of two descriptions:

o A scene description that describes the mesh and the background,
such as: "This is a brown person wearing a grey T-shirt and
dark pants. The background is white”. Indeed, that is the scene
description we use in all of our experiments using a human
texture.

o A description of the pose to be recovered in 3D as 6* through
optimization.

We start by assessing how well CLIP can distinguish different
prompts following the above construction with different basic pose
descriptions. Figure [2] shows the cosine similarity between a few
publicly available prompts,

The first three prompts describe the same pose in different or-
derings of specifications, the reason why their cosine similarity is
higher than for other prompts, as it should be. The remaining prompts

describe different poses or no pose at all. We extrapolate that CLIP
is slightly invariant to the ordering of pose specifications and that
it distinguishes relatively well different such descriptions under this
promnt construction scheme.
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Fig. 2. The cosine similarity between different prompts describing the same
scene but different poses.

V. SIMPLEDCLIP’S PERFORMANCE: SINGLE CAMERA
RENDERING

In this section, the model uses a single camera positioned on a
centric 3D sphere, with a field of view centered at the origin, to render
one image per pass. The required pose is given by the following
pose prompt: "She is looking upfront and is standing up straight
with both feet and hands flat. Both her arms are straight above her
head.”. Figure@depicts the evolution of the loss in both cases where
the mesh has a grey texture or a human texture. Figure E shows the
best poses of both meshes, loss-wise, which are also highlighted in
Figure 3] The visualization parameters are identical in both cases. In
particular, the meshes are seen with null azimuthal rotation.
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Fig. 3. Lo p loss plot for two meshes with different textures but in the same
settings. The minimum loss is highlighted for each mesh.
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Fig. 4. The minimal loss poses with grey-textured or human-textured meshes.

In most of our experiments with a grey-textured mesh, it has had
large variations of the loss during optimization and the longer we
optimized the more the mesh tended to take inhuman poses, not
close to the required pose. Moreover, the minimal loss pose does not
correspond to the required one. On the other hand, even if the human
mesh does not correspond to the required pose either, it is closer to it


https://github.com/B4Farouk/smpl-dr-clip/blob/main/prompts.md

and the loss is smaller overall. Note a few unwanted joint rotations,
such as the ankles. This behavior generalizes to other prompts in
non-degenerative cases, so we deduce that adding a texture improves
the performance.

VI. SIMPLEDCLIP’S PERFORMANCE: MULTI-CAMERA
RENDERING

In this section, SimpledCLIP uses five cameras positioned on a
centric 3D sphere, on a circle parallel to the equator plane of that
sphere, with a field of view that is centered at the origin as previously,
to render five images per pass. The reason we use more cameras is on
one hand to capture full information about the 3D pose of the mesh,
and on the other hand, as an effort to compensate for bad minima
that may arise when fitting a 3D pose via 2D information only.

A. Adaptation of the Optimization Objectives

Having n renders per pass results in as many image embeddings,
each corresponding to a different view angle. We denote those embed-
dings by the set V = {v;,1 < ¢ < n}. Inspired by Text2Mesh [1],
we define two loss aggregations to account for the information within
each image embedding in V' during the optimization:

o Loss on Average Embedding (LoAE):
L(u*, V) = L(u, 3 357 vi)

’n

o Average Loss on Embeddings (ALoE):
L(w*, V)= % S L(u™,vg)

B. Results

Following up with the same prompt from section [V] figure [
depicts the evolution of L;p and Lcp respectively under the ALoE
and LoAE loss aggregations. Just like previously, figure |§| shows
the resulting minimal loss poses. The visualization parameters are
identical in the pose quad plot. In particular, the azimuthal rotation
is 45°.
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Fig. 5. L;p and Lo p ALOE/LoAE respectively with five cameras rendering
a human-textured mesh.

Depending on the optimization objective, ALoE or LoOAE may per-
form better loss-wise. Although there is no significant improvement
loss-wise for Lcp compared to the result of the previous section, the

minimal loss pose of Lcp LoAE gets a little closer to the required
pose. Lrp ALOE has a not-so-bad minimal loss pose either. In both
cases, the unnecessary joint rotations persist.
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Fig. 6. Lcp and Lyp LoAE/ALOE minimal loss pose plots, with five
cameras rendering a human-textured mesh.

VII. SIMPLEDCLIP’S PERFORMANCE: PARTIAL OPTIMIZATION
ON MULTI-CAMERA RENDERING

Lcp diminishes scarcely (order of 107! at most) in our previous
experiments. Thus, we assist SimpledCLIP by freezing, in a correct
pose, the joints that are independent of the required movement with
respect to the initial pose. Following up with the same prompt as
previously, the frozen joints are at least those of the lower half of the
body. The results are shown in figures [7] and [VII] The visualization
parameters are as usual identical in the quad plot. The azimuth angle
is 55°.
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Fig. 7. Lcp and Lyp LoAE/ALoE minimal loss pose plots, with five
cameras rendering a human-textured mesh, when the lower body is frozen.



The losses diminish faster in the first few passes compared to
previously, however, surprisingly, the minimal loss is almost always
as large if not larger for both losses with either aggregation. More-
over, the minimal loss poses are still far from the required pose. We
deduce that SimpledCLIP may rely on unnecessary joint rotations that
minimize the loss further, which does not contribute to recovering the
required pose.
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Fig. 8. Lop and L;p LoAE/ALOE minimal loss pose plots when the lower
half of the body is frozen.
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VIII. WHY IS SIMPLEDCLIP NOT ABLE TO RECOVER THE POSE?
A. The composition of SMPL and DR does not fit a target image

In this section, we look at the composition of SMPL with the
differentiable renderer (DR) only.

We aim to determine if the pose on a given reference image is
recoverable. We choose a encoding a simple plausible human pose
and compute its corresponding render w(6; 2, 5*). Similarly, we
denote the render of an arbitrary 6 as w(6;, 3*). Consequently,
we have the following optimization problem, where we choose the
simplest loss which is the euclidean distance:

0 = argming||w — 0||%

Figure 0] below is an example result we get by gradient descent
optimization, using the resulting 6 of the previous pass in the
following:

Target Result of the optimization

T T v

Fig. 9. Trying to fit a target image starting with an initial pose. The result is
very far from the target.

Initial T-pose

As can be seen above, the composition of SMPL and DR is not
able to fit the target image, at least not with the euclidean distance as
an optimization objective. Indeed, the mesh folds so that the render
minimizes the pixel-to-pixel euclidean distance between the target
and the resulting image, but it does so in a bad way that gets it stuck
in a local minimum. We have noticed similar results with other target
poses. Consequently, SimpledCLIP may not be able to recover the
required pose.

B. CLIP does not recognize well enough different poses of our
human-textured mesh

Figure @ shows that CLIP does not recognize well enough our
human-textured mesh in different poses, since the cosine similarity
for matching textual pose and 3D pose render (2D image) which are
along the diagonal are very low, given that the cosine similarity is
a confidence score that the text matches the content of the image.
Occasionally, these values may even be larger for incorrect textual
pose and render pairs, as we can see for the pose “’kicking” with the
render corresponding to “airplane”. This may be the biggest hindrance
to SimpledCLIP so far.

i~ ¢~ 1 "
standing - 030 0.26 0.27 0.27 0.28 0.28
lying down - 0:24 0.32 0.27 0.30 0.26 0.27
stretching - 027 0.28 0.29 0.29 0.31 0.30
swimming - 025 0.28 0.27 0.33 0.29 0.31
kicking — 028 0.25 0.29 0.29 0.31 0.32
airplane - 027 0.28 0.30 0.32 0.31 0.34

Fig. 10. The cosine similarity of different 3D poses and their respective pose
descriptions.

IX. SUMMARY

All in all, SimpledCLIP as we have developed and studied it so far
is not successful at retrieving prompted human 3D poses. A few ways
to improve SimpledCLIP include adding at least a “ground” to help
CLIP capture the orientation of the body, as well as constraining
SMPL’s pose parameters to the humanly plausible ones using for
instance Adversarial Paramteric Pose Prior[3].

X. REPRODUCIBILITY

We provide the following publicly available file| that details our
model version choices and hyperparameters €2, in addition to opti-
mization methods and parameters, to help reproduce our results.
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