
RGL semester project report on the FLIP algorithm

Juliette Parchet

Referent : Sébastien Speirer

Professor : Wenzel Jakob

Fall 2021

Contents

1 Introduction 2
1.1 Motivation behind the FLIP tool . 2
1.2 Human Vision System . 2

2 FLIP details 3
2.1 Color Pipeline . 3
2.2 Feature Pipeline . 4
2.3 FLIP difference value . 4

3 Results, Comparisons, and Performance 6
3.1 Results of Mitsuba implementation . 6
3.2 How to use Mitsuba FLIP . 7
3.3 Comparison of the Mitsuba implementation with the Numpy implementation of FLIP . . 7
3.4 Performance of Mitsuba against the Numpy implementation of FLIP 8
3.5 Performance of FLIP against the L1, L2 errors used currently 8

4 Conclusion 10
4.1 Why it could it be helpful for the Mitsuba framework . 10
4.2 What I have learned from this bachelor’s project . 10

1

Chapter 1

Introduction

1.1 Motivation behind the FLIP tool

Measuring the image quality of a rendering algorithm is essential in the graphic rendering domain.
A standard technique used in computer graphics is flipping between two similar images to reveal their
differences (a reference image, obtained by a trusted way, representing the authentic image; and a test
image, an approximated rendering of the reference image). The FLIP algorithm aims to automate this
strenuous method and render a new image containing the amplitude of the perceived distance between
the reference and test image per pixel. As explained in the FLIP paper1, the algorithm is developed on
the evaluation of error maps of the manual flipping method. Indeed, the FLIP tool aims at rendering
a differential image between test and reference images by taking into account numerous aspects of the
human visual system. This way, it would highlight the differences humans perceive and mask some that
humans do not recognize.

1.2 Human Vision System

FLIP especially pays attention to the viewing conditions of the images. It is expressed with the
parameter p - the number of pixels per degree (which considers the monitor size, the resolution of the
screen, and the distance from the screen). This parameter p in an optional argument in the flip(...)

function2, and is set by default to the value 67 (for a 4k-resolution monitor of size 0.69 x 0.39 m², of
resolution 3840 x 2160 pixels, with the observer at a distance 0.7 m of the screen).

Another particular point targeted by FLIP is the Hunt effect, which states that the chromatic differ-
ences between images with higher brightness appear larger. To counter this effect, we use the L⋆a⋆b Hunt
color space, which lowers the chromatic distance between two colors if the brightness is low by applying
a linear function to the a and b channels.

Furthermore, FLIP takes into account the edge and point-based differences - such as fireflies, with the
use of the feature pipeline. We will discuss more the feature pipeline further in the report.

1Andersson, Jim Nilsson, Tomas Akenine-Möller, Magnus Oskarsson, Kalle Åström, and Mark D.Fairchild. 2020. FLIP: A
Difference Evaluator for Alternating Images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2, Article 15 (August 2020),
23 pages. https://doi.org/10.1145/3406183

2or the flip pooling(...) function

2

Chapter 2

FLIP details

Figure 2.1: the FLIP pipeline

As we can see in Figure 2.1, the FLIP algorithm is divided into two distinct pipelines: color and
feature pipelines. Let us take a closer look at these two.

2.1 Color Pipeline

The color pipeline first preprocesses and filters the reference and test images. To void some color
shifts during filtering (leading to achromatic and chromatic confusion), FLIP uses the YyCxCz color
space, a linearized version of CIE L⋆a⋆b (obtained via the XYZ tristimulus values) using the standard
illuminance D65. Here, Yy contains the achromatic information, Cx the red/green information, and Cz
the blue/yellow information. We transform the contrast sensitivity functions from the frequency to the
spatial domain, where we perform a gaussian-based convolution of the reference and test images. Finally,
the images are transformed into the CIE L⋆a⋆b color space, a perceptually uniform color space. The idea
behind the CIE L⋆a⋆b color space is that the numeric distances between colors agree with the perceived
distance between them. Then as discussed before, to consider the Hunt effect, we adjust the a and b
channels and transform the images into the L⋆a⋆b Hunt color space.

The color pipeline then computes the color metric when the preprocessing is done for the reference
and test images. As the color difference is often significant in rendering applications, FLIP uses the HyAB
distance metric instead of a more common one like the Euclidian distance. Indeed, the HyAB distance
metric, a hybrid model between the Euclidian and the city-block models, is designed to handle large color

3

distances. Finally, a last correction of the result is made: to reduce the gap between significant differences
in luminance versus large differences in chrominance, FLIP offers to compress large distances into the top
of the [0, 1] range and map smaller distances to the remaining part of it. This process is shown in Figure
2.2.

Figure 2.2: Error mapping compression of the color distance

Ultimately, the color pipeline yields this mapped color distance, denoted by ∆Ec, resulting from
preprocessing of the reference and test images, and their color metric distance computation.

2.2 Feature Pipeline

By simply examining the color distance between two images, we would miss significant (and very
strongly detected by humans) differences: the edge and point detections. This is why, in addition to the
color pipeline, FLIP developed a feature pipeline that detects edges and points in the images and then
computes the feature metric distance between the reference and test images. This result will amplify the
color metric distance computed by the color pipeline (as shown in Figure 2.1).

The feature detection (edge and point detection) is done in the YyCxCz color space. It only analyzes
the achromatic Yy channel, which contains the majority of the high-frequency spatial data. The feature
detection is done via the convolution of the image, and the kernels are computed based on the first
gaussian derivative for the edge detection and the second gaussian derivative for the point detection.

After the feature screening, the feature metric distance is calculated. Considering that edges and
points never occur in the same pixels, this distance is calculated by taking the maximum absolute distance
between the edge and point magnitude of the reference and test images. Finally, this distance is normalized
in [0, 1] and taken to the power of qf = 1/2 to increase the incidence of the feature difference on the final
error map. ∆Ef denotes this final value.

We can observe in Figure 2.3 the significance of the feature pipeline: the perceptually noticeable
difference in the structure of the stool feet is enhanced by the feature pipeline.

Figure 2.3: 1) The reference image of the tool, 2) the test image of the stool, 3) ∆Ec : the color pipeline
only, 4) the entire FLIP pipeline

2.3 FLIP difference value

When the per-pixel color metric and feature metric distances are computed, the FLIP difference value
(denoted by ∆E = (∆Ec)

1−∆Ef) can be calculated. It results in an Enoki TensorXf of shape HxWx1 (with

4

H the image height, W the image width, and 1 indicate that ∆E only has one channel). As both ∆Ec

and ∆Ef are in [0, 1], ∆E is also in [0, 1]. We can remark that if ∆Ec = 0 then ∆E = 0, independently
of ∆Ef . Likewise, if ∆Ef = 1, then ∆E = 1 is maximal, regardless of ∆Ec. Furthermore, if ∆Ef = 0,
then ∆E is entirely determined by ∆Ec.

5

Chapter 3

Results, Comparisons, and Performance

The results and performance analysis are performed with a ThinkPad T480s, with the UserBenchmarks
analysis1: CPU: Intel Core i7-8550U - 47.9%, GPU: Intel UHD Graphics 620 (Mobile Kaby Lake R) -
5.7%, SSD: Samsung PM981 NVMe PCIe M.2 512GB - 135.1%, RAM: Samsung M471A1K43BB1-CRC
M471A1K43CB1-CRC 16GB - 67.4%, MBD: Lenovo 20L7CTO1WW.

3.1 Results of Mitsuba implementation

As discussed earlier, the Mitsuba FLIP implementation can yield an error map ∆E. Nevertheless, we
may want to condense the error map found to a smaller set of values. That is the role of the flip pooling

function, which renders a histogram containing the values of ∆E stored in several bins. It is also possible
to extract valuable values as the mean or the median of ∆E. Let us see here these different results.

Figure 3.1: 1) the reference dragon image, 2) the test dragon image, 3) the error map ∆E of the dragon
images (TensorXf type)

In Figure 3.1, we can see the FLIP result with the most data: the error map ∆E. It is returned by the
flip(...) method as an Enoki TensorXf of dimension HxWx1 (with H the height of the image, W the
width of the image and 1 to signify that the TensorXf only has one channel). It is the main aim of FLIP:
it contains all the data computed by the algorithm and is the automated result of the manual flipping
technique.

In Figure 3.2, we can observe a plotted histogram of ∆E, in addition to the mean and the median
values. These results are obtained with the flip pooling(...) function, which renders the histogram
of the error map, and optionally the mean and/or the median. These results could prove helpful, for
example, as a machine learning loss function parameter or as an approval threshold for validation of an
implemented algorithm.

1https://www.userbenchmark.com/

6

Figure 3.2: 1) the error map ∆E of the dragon images (TensorXf type), 2) the plotted histogram, the
mean and the median of ∆E

3.2 How to use Mitsuba FLIP

All the functions used for the Mitsua FLIP implementation are written in the flip mitsuba.py python
document. The only functions which should be used are
flip(reference, test, p = 67, p c = 0.4, p t = 0.95) and
flip pooling(reference, test, nb bins = 100, return mean = False, return median = False,

p = 67, p c = 0.4, p t = 0.95)

As explained in the documentation, the flip(...) function takes two Enoki TensorXf images as
parameters, and returns an Enoki TensorXf new image indicating the perceived distance between the
reference and test images. Furthermore, it takes some optional arguments. The parameter p, as we
discussed earlier (with its default setup being 67 pixels per degree), is calculated as p = d× Wp×π

Wm×180 , with
Wp the monitor width pixel number, Wm the monitor width in meters, and d the distance from the screen
in meters. The parameters pc and pt are used as mentioned above to compress the error mapping of the
color pipeline distance and can be changed to optimize the FLIP algorithm.

The flip pooling(...) function takes the same arguments as the flip(...) method but addition-
ally takes nb bins, which indicates the number of bins of the histogram’s x-axis to construct. In addition,
the method also takes return mean and return median, which indicates if the function should returns
the mean and/or the median of ∆E. This function returns (always) the pooled histogram of ∆E (an
Enoki Float type) with its x-axis going from 0 to 1, and returns (if asked) the mean and/or the median
of ∆E.

3.3 Comparison of the Mitsuba implementation with the Numpy im-
plementation of FLIP

In Figure 3.3 we can observe the result of the Enoki and Numpy FLIP implementations.2 They seem
very similar, and indeed, bellow is the displayed absolute difference between these implementations: the
difference is almost zero, with the mean = 0.000. In conclusion, the LDR FLIP algorithm seems to be
correctly implemented in the Mistuba framework because almost identical to the Numpy implementation
provided by FLIP. However, one can see some performance differences.

2See the test rapport flip pipeline.ipynb Jupyter Notebook for more details

7

Figure 3.3: 1) the reference dragon image, 2) the test dragon image, 3) Mitsuba FLIP ∆E, 4) Numpy
FLIP ∆E, 5) the absolute difference between 3) and 4) displayed in the Tev application

3.4 Performance of Mitsuba against the Numpy implementation of
FLIP

After running 1000 times the FLIP method both in Mitsuba and Numpy frameworks (with the dragon
image: width = 800 pixels, height = 600 pixels, linear RGB, p = 67, pc = 0.4, pt = 0.95), we notice that
the Mitsuba FLIP is around 2 times slower than the Numpy FLIP.3 For the dragon image, Mistuba FLIP
takes 0.91 seconds, where Numpy FLIP takes 0.40 seconds.

The difference was much more significant in the early stages of the project (around ten times slower),
and some improvements were made (particularly in the feature pipeline: the convolve edge detection

function was improved by only using simple computations and minimizing the calls to lookup offset(...)).
Some improvements are yet to be made, particularly in the convolution calculation: the lookup offset

function uses some ek.gather(...), which are very costly, and it slows down a lot the algorithm execu-
tion. Furthermore, we could improve the performance by parallelizing the preprocessing of the images,
the edge and point detection, and, more generally, the two pipelines. Indeed, these processes are primarily
independent and would be pretty easy to parallelize.

3.5 Performance of FLIP against the L1, L2 errors used currently

As we can remark in figure 4.3, the error map is very different between the FLIP algorithm and the
L1 (city-block or Manhattan) and L2 (Euclidean) techniques. One could argue that the FLIP algorithm
renders more faithfully than the L1 and L2 techniques the errors distinguished between the reference and
test images. For example, the fireflies on the ground are way more precise in 3), and on the contrary in

3See the test rapport performance.ipynb Jupyter Notebook for more details

8

4) and 5) it is blurry. Also, the features of the dragon are mostly well-rendered in the test image, and 3)
shows that fact, contrarywise of 4) and 5).

However, another aspect to take into account is the performance, and here FLIP is really behind L1
and L2. When running the different methods 1000 times: Mitsuba FLIP is approximately 1714 times
slower than L1, and 1830 times slower than L24. The Mitsuba FLIP runs in approximately 0.86 seconds,
the L1 in 0.00051 seconds, and L2 in 0.00047 seconds.

Figure 3.4: Error map between the 1) reference and 2) test images for 3) the Mitsuba FLIP, 4) the L1
(Manhattan or city-block) distance, 5) the L2 (Euclidean) distance

4See the test rapport L1 L2 comparison.ipynb Jupyter Notebook for more details

9

Chapter 4

Conclusion

4.1 Why it could it be helpful for the Mitsuba framework

As we discussed in the introduction, currently used methods to assess the quality of a rendering algo-
rithm (by comparing a reference and test images) can be: manual flipping, or simple distance computations
(as L1 or L2 methods). I believe that the manual flipping between two images is very time-consuming,
and that the L1/L2 methods, even if very fast, do not represent as well as the FLIP method the perceived
differences between two images. Furthermore, FLIP does not only render the new image ∆E, but can
also render a histogram or single values such as the mean and the median. Because of the performance
issue, Mitsuba FLIP may not yet be used with large data sets, but I believe that for smaller ones, FLIP
could prove very useful and precise.

4.2 What I have learned from this bachelor’s project

This semester, I learned more about the computer graphic domain and the complexity of evaluating
the quality of a rendered image. By analizing the FLIP paper (and related works), I broadened my vision
of the computer graphics field. I also had to assimilate an unknown and not fully documented library:
Enoki. It was quite a challenge, as I never had to deal with a similar issue during my studies. Hopefully,
my referent was here to guide me through this new situation and explained to me how to use some of
the most useful methods of Enoki, like ek.gather(...), or ek.scatter(...). I also learned more about
Enoki types as Array3f, Bitmap, or TensorXf, which differs from the python types I have worked with.
Finally, I experienced running semester-length project outside of a course for the first time, which allowed
me to have a more flexible calendar and project direction. In conclusion, working with the Realistic Graph
Laboratory was a unique, engaging, and stimulating experience.

All the work done (the FLIP implementation, the images used in the report, the tests performed,...)
can be found in Github at the web address: https://github.com/Jucifer06/Flip

10

