RGL semester project report on the 1LIP algorithm

Juliette Parchet

Referent : Sébastien Speirer
Professor : Wenzel Jakob

Fall 2021

Contents

1 Introduction 2
1.1 Motivation behind the HLIP tool 2
1.2 Human Vision System L L 2

2 MYLIP details 3
2.1 Color Pipeline e 3
2.2 Feature Pipeline e 4
2.3 MLIP difference value 4

3 Results, Comparisons, and Performance 6
3.1 Results of Mitsuba implementation 6
3.2 How to use Mitsuba ILIP 7
3.3 Comparison of the Mitsuba implementation with the Numpy implementation of HLIP 7
3.4 Performance of Mitsuba against the Numpy implementation of 1LIP 8
3.5 Performance of 1LIP against the L1, L2 errors used currently 8

4 Conclusion 10
4.1 Why it could it be helpful for the Mitsuba framework 10
4.2 What I have learned from this bachelor’s project 10

Chapter 1

Introduction

1.1 Motivation behind the HLIP tool

Measuring the image quality of a rendering algorithm is essential in the graphic rendering domain.
A standard technique used in computer graphics is flipping between two similar images to reveal their
differences (a reference image, obtained by a trusted way, representing the authentic image; and a test
image, an approximated rendering of the reference image). The YLIP algorithm aims to automate this
strenuous method and render a new image containing the amplitude of the perceived distance between
the reference and test image per pixel. As explained in the ILIP paper!, the algorithm is developed on
the evaluation of error maps of the manual flipping method. Indeed, the HLIP tool aims at rendering
a differential image between test and reference images by taking into account numerous aspects of the
human visual system. This way, it would highlight the differences humans perceive and mask some that
humans do not recognize.

1.2 Human Vision System

HLIP especially pays attention to the viewing conditions of the images. It is expressed with the
parameter p - the number of pixels per degree (which considers the monitor size, the resolution of the
screen, and the distance from the screen). This parameter p in an optional argument in the £1ip(...)
function?, and is set by default to the value 67 (for a 4k-resolution monitor of size 0.69 x 0.39 m?2, of
resolution 3840 x 2160 pixels, with the observer at a distance 0.7 m of the screen).

Another particular point targeted by MLIP is the Hunt effect, which states that the chromatic differ-
ences between images with higher brightness appear larger. To counter this effect, we use the Lxaxb Hunt
color space, which lowers the chromatic distance between two colors if the brightness is low by applying
a linear function to the a and b channels.

Furthermore, ILIP takes into account the edge and point-based differences - such as fireflies, with the
use of the feature pipeline. We will discuss more the feature pipeline further in the report.

! Andersson, Jim Nilsson, Tomas Akenine-Mdller, Magnus Oskarsson, Kalle Astrém, and Mark D.Fairchild. 2020.9LIP: A
Difference Evaluator for Alternating Images. Proc. ACM Comput. Graph. Interact. Tech. 3, 2, Article 15 (August 2020),
23 pages. https://doi.org/10.1145/3406183

2or the flip_pooling(...) function

Chapter 2

HLIP details

Color pipeline

Image preprocessing '
Reference image fr— Color metric A EC

distance
f—i Error map —)AE
Point and edge detection .
Feature metric

Testimage TG AE

Point and edge detection -F

Image preprocessing

1 ’AEF

Feature pipeline
Figure 2.1: the YLIP pipeline

As we can see in Figure 2.1, the HLIP algorithm is divided into two distinct pipelines: color and
feature pipelines. Let us take a closer look at these two.

2.1 Color Pipeline

The color pipeline first preprocesses and filters the reference and test images. To void some color
shifts during filtering (leading to achromatic and chromatic confusion), TLIP uses the YyCxCz color
space, a linearized version of CIE Lkxaxb (obtained via the XYZ tristimulus values) using the standard
illuminance D65. Here, Yy contains the achromatic information, Cx the red/green information, and Cz
the blue/yellow information. We transform the contrast sensitivity functions from the frequency to the
spatial domain, where we perform a gaussian-based convolution of the reference and test images. Finally,
the images are transformed into the CIE Lxaxb color space, a perceptually uniform color space. The idea
behind the CIE Lxaxb color space is that the numeric distances between colors agree with the perceived
distance between them. Then as discussed before, to consider the Hunt effect, we adjust the a and b
channels and transform the images into the Lxaxb Hunt color space.

The color pipeline then computes the color metric when the preprocessing is done for the reference
and test images. As the color difference is often significant in rendering applications, 1LIP uses the HyAB
distance metric instead of a more common one like the Fuclidian distance. Indeed, the HyAB distance
metric, a hybrid model between the Euclidian and the city-block models, is designed to handle large color

distances. Finally, a last correction of the result is made: to reduce the gap between significant differences
in luminance versus large differences in chrominance, 1LIP offers to compress large distances into the top
of the [0, 1] range and map smaller distances to the remaining part of it. This process is shown in Figure
2.2.

0 p_c * c_max c_max

| | L (e,

——— T,

0 p_t 1

Figure 2.2: Error mapping compression of the color distance

Ultimately, the color pipeline yields this mapped color distance, denoted by AF,., resulting from
preprocessing of the reference and test images, and their color metric distance computation.

2.2 Feature Pipeline

By simply examining the color distance between two images, we would miss significant (and very
strongly detected by humans) differences: the edge and point detections. This is why, in addition to the
color pipeline, 1LIP developed a feature pipeline that detects edges and points in the images and then
computes the feature metric distance between the reference and test images. This result will amplify the
color metric distance computed by the color pipeline (as shown in Figure 2.1).

The feature detection (edge and point detection) is done in the YyCxCz color space. It only analyzes
the achromatic Yy channel, which contains the majority of the high-frequency spatial data. The feature
detection is done via the convolution of the image, and the kernels are computed based on the first
gaussian derivative for the edge detection and the second gaussian derivative for the point detection.

After the feature screening, the feature metric distance is calculated. Considering that edges and
points never occur in the same pixels, this distance is calculated by taking the maximum absolute distance
between the edge and point magnitude of the reference and test images. Finally, this distance is normalized
in [0,1] and taken to the power of ¢y = 1/2 to increase the incidence of the feature difference on the final
error map. AFE; denotes this final value.

We can observe in Figure 2.3 the significance of the feature pipeline: the perceptually noticeable
difference in the structure of the stool feet is enhanced by the feature pipeline.

Figure 2.3: 1) The reference image of the tool, 2) the test image of the stool, 3) AE, : the color pipeline
only, 4) the entire ILIP pipeline

2.3 M™MLIP difference value

When the per-pixel color metric and feature metric distances are computed, the ILIP difference value
(denoted by AE = (AE,.)'~2Fr) can be calculated. It results in an Enoki TensorXf of shape HxWx1 (with

H the image height, W the image width, and 1 indicate that AE only has one channel). As both AFE,
and AEy are in [0,1], AE is also in [0, 1]. We can remark that if AE. = 0 then AE = 0, independently
of AE;. Likewise, if AE; = 1, then AE = 1 is maximal, regardless of AE,. Furthermore, if AEy = 0,
then AF is entirely determined by AF..

Chapter 3

Results, Comparisons, and Performance

The results and performance analysis are performed with a ThinkPad T480s, with the UserBenchmarks
analysis': CPU: Intel Core i7-8550U - 47.9%, GPU: Intel UHD Graphics 620 (Mobile Kaby Lake R) -
5.7%, SSD: Samsung PM981 NVMe PCle M.2 512GB - 135.1%, RAM: Samsung M471A1K43BB1-CRC
M471A1K43CB1-CRC 16GB - 67.4%, MBD: Lenovo 20L7CTO1WW.

3.1 Results of Mitsuba implementation

As discussed earlier, the Mitsuba YLIP implementation can yield an error map AFE. Nevertheless, we
may want to condense the error map found to a smaller set of values. That is the role of the £1ip_pooling
function, which renders a histogram containing the values of AF stored in several bins. It is also possible
to extract valuable values as the mean or the median of AE. Let us see here these different results.

Figure 3.1: 1) the reference dragon image, 2) the test dragon image, 3) the error map AFE of the dragon
images (TensorXf type)

In Figure 3.1, we can see the 1LIP result with the most data: the error map AFE. It is returned by the
flip(...) method as an Enoki TensorXf of dimension HxWx1 (with H the height of the image, W the
width of the image and 1 to signify that the TensorXf only has one channel). It is the main aim of ILIP:
it contains all the data computed by the algorithm and is the automated result of the manual flipping
technique.

In Figure 3.2, we can observe a plotted histogram of AF, in addition to the mean and the median
values. These results are obtained with the f1lip pooling(...) function, which renders the histogram
of the error map, and optionally the mean and/or the median. These results could prove helpful, for
example, as a machine learning loss function parameter or as an approval threshold for validation of an
implemented algorithm.

Thttps://www.userbenchmark.com/

The results for the dragon image:
The mean of the error map (in [0, 1]): 0.1088814697265625
The median of the error map (in [0, 1]): ©.08067616075277328

number of pixels per bin of error in [0, 1]

20000

17500

15000

12500

10000

7500

5000

2500

0

Figure 3.2: 1) the error map AFE of the dragon images (TensorXf type), 2) the plotted histogram, the
mean and the median of AE

3.2 How to use Mitsuba HLIP

All the functions used for the Mitsua 1LIP implementation are written in the f1ip mitsuba.py python
document. The only functions which should be used are
flip(reference, test, p = 67, p.c = 0.4, p.t = 0.95) and
flip pooling(reference, test, nb_bins = 100, return mean = False, return median = False,

p = 67, pc = 0.4, p.t = 0.95)

As explained in the documentation, the f1ip(...) function takes two Enoki TensorXf images as
parameters, and returns an Enoki TensorXf new image indicating the perceived distance between the
reference and test images. Furthermore, it takes some optional arguments. The parameter p, as we
discussed earlier (with its default setup being 67 pixels per degree), is calculated as p = d x meixxféo, with
W), the monitor width pixel number, W, the monitor width in meters, and d the distance from the screen
in meters. The parameters p. and p; are used as mentioned above to compress the error mapping of the
color pipeline distance and can be changed to optimize the ILIP algorithm.

The f1ip_pooling(...) function takes the same arguments as the £1ip(...) method but addition-
ally takes nb_bins, which indicates the number of bins of the histogram’s x-axis to construct. In addition,
the method also takes return_mean and return_median, which indicates if the function should returns
the mean and/or the median of AE. This function returns (always) the pooled histogram of AE (an
Enoki Float type) with its x-axis going from 0 to 1, and returns (if asked) the mean and/or the median
of AF.

3.3 Comparison of the Mitsuba implementation with the Numpy im-
plementation of 1LIP

In Figure 3.3 we can observe the result of the Enoki and Numpy "ILIP implementations.? They seem
very similar, and indeed, bellow is the displayed absolute difference between these implementations: the
difference is almost zero, with the mean = 0.000. In conclusion, the LDR HLIP algorithm seems to be
correctly implemented in the Mistuba framework because almost identical to the Numpy implementation
provided by 1LIP. However, one can see some performance differences.

2See the test_rapport_flip_pipeline.ipynb Jupyter Notebook for more details

Tonemapping

Exposure: +0.0

Offset: +0.00

Normalize Reset

sRGB Gamma FC +-

Images

0.000 0.000

Minimum: 0.000
Mean: 0.000
Maximum: 0.001
-.Mo_Tolaer/aragon_arn_output.exr
| 1_fm

fn_ou

Figure 3.3: 1) the reference dragon image, 2) the test dragon image, 3) Mitsuba ILIP AFE, 4) Numpy
HLIP AE, 5) the absolute difference between 3) and 4) displayed in the Tev application

3.4 Performance of Mitsuba against the Numpy implementation of
HALIP

After running 1000 times the ILIP method both in Mitsuba and Numpy frameworks (with the dragon
image: width = 800 pixels, height = 600 pixels, linear RGB, p = 67, p. = 0.4, p; = 0.95), we notice that
the Mitsuba ILIP is around 2 times slower than the Numpy ALIP.? For the dragon image, Mistuba ILIP
takes 0.91 seconds, where Numpy HLIP takes 0.40 seconds.

The difference was much more significant in the early stages of the project (around ten times slower),
and some improvements were made (particularly in the feature pipeline: the convolve edge detection
function was improved by only using simple computations and minimizing the calls to lookup_offset(...)).

Some improvements are yet to be made, particularly in the convolution calculation: the lookup_offset
function uses some ek.gather(...), which are very costly, and it slows down a lot the algorithm execu-
tion. Furthermore, we could improve the performance by parallelizing the preprocessing of the images,
the edge and point detection, and, more generally, the two pipelines. Indeed, these processes are primarily
independent and would be pretty easy to parallelize.

3.5 Performance of ILIP against the L1, L2 errors used currently

As we can remark in figure 4.3, the error map is very different between the HLIP algorithm and the
L1 (city-block or Manhattan) and L2 (Euclidean) techniques. One could argue that the ILIP algorithm
renders more faithfully than the L1 and L2 techniques the errors distinguished between the reference and
test images. For example, the fireflies on the ground are way more precise in 3), and on the contrary in

3See the test_rapport_performance.ipynb Jupyter Notebook for more details

4) and 5) it is blurry. Also, the features of the dragon are mostly well-rendered in the test image, and 3)
shows that fact, contrarywise of 4) and 5).

However, another aspect to take into account is the performance, and here 1LIP is really behind L1
and L2. When running the different methods 1000 times: Mitsuba "LIP is approximately 1714 times
slower than L1, and 1830 times slower than L2%. The Mitsuba “ILIP runs in approximately 0.86 seconds,
the L1 in 0.00051 seconds, and L2 in 0.00047 seconds.

Figure 3.4: Error map between the 1) reference and 2) test images for 3) the Mitsuba "ILIP, 4) the L1
(Manhattan or city-block) distance, 5) the L2 (Euclidean) distance

4See the test_rapport_L1_L2_comparison.ipynb Jupyter Notebook for more details

Chapter 4

Conclusion

4.1 Why it could it be helpful for the Mitsuba framework

As we discussed in the introduction, currently used methods to assess the quality of a rendering algo-
rithm (by comparing a reference and test images) can be: manual flipping, or simple distance computations
(as L1 or L2 methods). I believe that the manual flipping between two images is very time-consuming,
and that the L1/L2 methods, even if very fast, do not represent as well as the TILIP method the perceived
differences between two images. Furthermore, ILIP does not only render the new image AFE, but can
also render a histogram or single values such as the mean and the median. Because of the performance
issue, Mitsuba MLIP may not yet be used with large data sets, but I believe that for smaller ones, HLIP
could prove very useful and precise.

4.2 What I have learned from this bachelor’s project

This semester, I learned more about the computer graphic domain and the complexity of evaluating
the quality of a rendered image. By analizing the ILIP paper (and related works), I broadened my vision
of the computer graphics field. I also had to assimilate an unknown and not fully documented library:
Enoki. It was quite a challenge, as I never had to deal with a similar issue during my studies. Hopefully,
my referent was here to guide me through this new situation and explained to me how to use some of
the most useful methods of Enoki, like ek.gather(...), or ek.scatter(...). I also learned more about
Enoki types as Array3f, Bitmap, or TensorXf, which differs from the python types I have worked with.
Finally, I experienced running semester-length project outside of a course for the first time, which allowed
me to have a more flexible calendar and project direction. In conclusion, working with the Realistic Graph
Laboratory was a unique, engaging, and stimulating experience.

All the work done (the ILIP implementation, the images used in the report, the tests performed,...)
can be found in Github at the web address: https://github.com/Jucifer06/Flip

10

