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Abstract

The demanding nature of prestigious technical schools often leads to stress, anxiety,
and burnout among students. Psychological distress rates at the EPFL (Swiss
Federal Institute of Technology of Lausanne) were found to be remarkably high
last November 2022, in a study conducted on campus[5]. A central solution at
EPFL is the targeted and personalized help provided by knowledgeable assistants
to students struggling in their studies. However, it requires significant human
resources to support individual students on campus, and with this in mind, AI
tutoring has emerged as a field capable of providing personalized and interactive
educational support. Various aspects of AI tutoring, including intelligent tutoring
systems[11], adaptive learning[13], or natural language processing (NLP)[15],
have positively impacted student learning, performance, and engagement. In this
work, we introduce an AI tutor tailored for technical school courses (explicitly
focusing on EPFL). When given a question from an exercise, the tutor must provide
an in-depth explanation to the student to educate them on how to solve the specific
exercise. We used a training methodology similar to modern AI chatbots such as
ChatGPT. The approach we used involves three key steps.

At first, we collect supervised fine-tuning data by distilling technical question
demonstrations via ChatGPT using prompt engineering techniques, while a human-
written cheat sheet is employed to guide ChatGPT’s answers and reduce occasional
inaccuracies. A step-by-step prompting strategy is found to be effective to provide
a meaningful explanation on how to answer the question. Secondly, the tutors
are further trained using reinforcement learning with human feedback (RLHF),
enabling them to learn from their generated demonstrations. A reward model is
trained to effectively evaluate and assess the quality of the chatbot’s demonstrations.
Lastly, the supervised demonstrations are used to train the final AI tutor, resulting
in a practical educational assistant. The quality of the demonstrations is measured
using standard metrics and the trained reward model. The results demonstrate that
the AI tutor developed in this study outperforms basic ChatGPT. The AI tutor shows
improved accuracy and effectiveness in providing educational support, making it
a valuable tool for technical school students. The application of reinforcement
learning and the potential for further enhancements are identified as future research
directions.
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1 Introduction

The demanding nature of prestigious technical schools often leads to stress, anxiety, and burnout
among students. Psychological distress rates at the EPFL (Swiss Federal Institute of Technology
of Lausanne) were found to be remarkably high last November 2022, in a study conducted on
campus, where 30.7% of respondents reported experiencing psychological distress[5]. A central
solution at EPFL is the targeted and personalized help provided by knowledgeable assistants to
students struggling in their studies. However, it requires significant human resources to support
individual students on campus, and with this in mind, AI tutoring has emerged as a field capable of
providing personalized and interactive educational support. Various aspects of AI tutoring, including
intelligent tutoring systems[11], adaptive learning[13], or natural language processing (NLP)[15],
have positively impacted student learning, performance, and engagement.

One of the most recent promising automatic approaches is "ChatGPT", a recent model trained
by OpenAI that can interact conversationally. This model is trained to follow instructions in a
prompt to provide appropriate responses in the context of a dialogue. ChatGPT can help answer
questions, suggest recipes, write lyrics in a certain style, generate code, and much more. One can
think, ChatGPT could easily generalize to tutor student engineers. Unfortunately, ChatGPT is not
specifically designed as a demonstration tool. While it can provide examples and explanations, its
responses are generated based on patterns and correlations in the training data rather than a deep
understanding of the underlying concepts. Therefore, the accuracy and reliability of demonstrations
by ChatGPT may vary depending on the user prompt [2, 8, 17] or the academic field [6]. Thus, it
cannot be used as a trustworthy AI tutor for engineering students.

In this work, we introduce an AI tutor tailored for technical school courses (explicitly focusing on
EPFL). When given a question from an exercise, the tutor must provide an in-depth explanation to the
student in order to help them understand how to solve the exercise. We used a training methodology
similar to modern AI chatbots such as ChatGPT. Specifically, our work is three-folded.

At first, we collect supervised fine-tuning data by distilling technical question demonstrations via
ChatGPT using prompt engineering techniques. The step-by-step prompting strategy described in [8]
is generally the most convincing and is found to be effective to provide a meaningful explanation
on how to answer the question. We also show ChatGPT is often wrong in the details, so we get the
help of a human-written cheat sheet that provides solutions to those technical questions to guide
ChatGPT’s answer.

Secondly, tutors trained with supervised demonstrations are further trained with reinforcement
learning with human feedback (RLHF) to learn more from their own generated demonstrations. For
RLHF to work, we train a reward model that can effectively reward the demonstrations that our
chatbot produces.

Finally, we use our supervised demonstrations to train our final chatbot, which can be a practical
educational assistant. We assess the quality of our demonstrations with standard metrics and our
trained reward model.

As a result, we demonstrate that our AI tutor is more accurate than basic ChatGPT but less accurate
than a well-prompted ChatGPT. Thorough evaluation support our claims both quantitatively and
qualitatively. The RLHF training is left as future work.

2 Related work

In the field of education - and especially in the field of Intelligent Tutoring Systems - there exist many
pre-existing works, starting as early as 1960 with the PLATO (Programmed Logic for Automatic
Teaching Operations) project, and improving greatly to this day on. A common denominator between
the previous research is that they explored various techniques for developing intelligent tutoring
systems that can adapt to individual student needs to enhance learning outcomes. These intelligent
tutoring systems were created from natural language processing models[1], speech models in neural
networks[16], data analytic models[3], and more. Overall, prior research in the field of AI tutors
has provided valuable insights into the design, development, and evaluation of intelligent tutoring
systems that can improve the quality of education and enhance student learning experiences.

In this paper, we will use pre-existing and pre-trained NLP models such as ChatGPT-2.
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3 Method

3.1 Dataset

3.1.1 Collecting demonstrations via ChatGPT

This report analyses various prompting strategies for collecting mathematical demonstrations of
linear algebra using ChatGPT. In this work, we are granted access to 100 exercise questions from a
French linear algebra class, including open and multiple-choice inquiries. An initial strategy would
be to select a unique case study, select an optimal prompting strategy, and reiterate the prompt for
every question. Unfortunately, an optimal prompting strategy for open questions is sub-optimal for
multiple-choice questions and vice-versa. For this reason, we defined one prompting procedure per
question type. Therefore, one case study was selected per question type to try and evaluate different
prompts. Specifically, we defined four prompting strategies for each case study, from trivial ones
to more complex ones. Then, we compared manually the quality of each demonstration and select
the best one according to a confidence score set by us. Finally, we prompted ChatGPT on all the
questions with the selected prompting strategies, which gave us a complete demonstration dataset.
Please see the Milestone 1 for more implementation details.

3.1.2 Reward Model Dataset

In this work, we are given access to a large dataset of human-machine interactions in the scope of
engineering classes. These interactions have been generated via ChatGPT by more than 100 NLP
students on diverse subjects and questions, all related to Science and Engineering. Each question
has three different answers, generated by three different human prompts. Each exchange has been
labeled with a confidence score rating the quality of the answer provided by the ChatGPT from 1
(low quality) to 5 (high quality). It means that to train our reward model, we have access to pairable
quality-labeled interactions. We won’t preprocess further on this data for our dataset, but we still
identify two problems:

• There is no ground-truth solution

• Some interactions have the same level of confidence for the same question, so the score
cannot rank them

Concerning the first issue, the course’s team provided us with a ground-truth solution dataset for
the different questions. However, the given answers are often not good examples of qualitative
explanations and educative developed answers. For example, MCQ’s answers often give the answers
without any explanation. To make use of these provided answers and have a bigger total dataset,
we created the Cheater dataset. The dataset contains new high-quality interactions using ChatGPT,
giving ChatGPT the solution and asking it to explain in detail why it is the answer.

For the second issue, every student has generated high-quality demonstrations in milestone 1. Conse-
quently, two different interactions of the same question can have the same quality score. To solve
this issue, we will artificially create a difference in the interaction qualities, by spawning a set of
low-quality interactions using extremely basic prompting, and by so creating the dataset Loser. In
the end, our training dataset for the reward model will contain high-quality (via the real solutions),
mid-quality (via the student interactions), and low-quality (via the very basic prompting) interactions.

Loser: We first build a dataset with the collected data and artificial bad interactions. We simply group
interactions per question id and get all possible pairs of interactions for the same question having
distinct qualities. For each pair, the interaction with higher confidence is labeled as chosen while the
other is labeled as rejected. This way, it generates more samples we can then label as positive. We
can then recombine it with bad samples for the same questions that we generated in part 1 to have
new chosen/rejected pairs.

Math: We added the MATH Dataset which contains problems from high-school math competitions
varying in difficulty from 1 to 5. Its solutions are formatted just like we desire: A step by step
reasoning explaining how to obtain the final answer (which is always mentioned and boxed). We first
load the dataset and convert its labels to fit our dataset’s format: the problem becomes a question
and the solution is labeled as the answer. We take all these ’interactions’ and label them as positive.
To complete the MATH Dataset, we need to build the negative parts of each sample. To do so, we

3

https://github.com/CS-552/project-m1-abyssalchat.git


Model / Dataset MATH Cheater Loser

Reward Model 1’125 612 16’812
Generative Model 6’375 3’473 0

Table 1: Number of examples per dataset, per data type. The datasets include the training and testing
datasets.

prompt ChatGPT for each question from the dataset. To be sure it gives "bad" answers, we use the
following system prompt: You are a bad assistant who answers questions without explaining the
reasoning behind them. Sometimes you replace numbers. We created multiple save checkpoints
because of the size of the dataset, which we then merged together to obtain the negative part of the
MATH dataset. Finally, for both parts of the MATH dataset (positive and negative) contained in
different files in the same directory, we merge all of them with positive samples being labeled as
chosen for a given question and negative samples with the same question being labeled as rejected.

3.2 Generative Model Dataset

For the generative model dataset, we needed pairs of input and label, with a scientific question as
input, and a suitable, correct, and well-developed answer as label. For this reason, we left out entirely
the Loser dataset, and only kept 85% of the Math and Cheater datasets, leaving the remaining 15%
for the reward model dataset. In these data, we only kept the best answer (the chosen answer) each
time as labels and discarded the rejected answer. We summarize our datasets in Table 1. This dataset
is then split in to a training dataset (80%) and a testing dataset (20%).

3.3 Model

3.3.1 Reward Model

Figure 1: The difference of accuracy on the validation dataset with and without the update of attention
layer 11

To implement the reward model, we decided to fine-tune DeBERTa-v2 [7] (Decoding-enhanced BERT
with Disentangled Attention) for Sequence Classification. It has all the advantages of the BERT [4]
and RoBERTa [10] models but improves on them with two significant refinements. The first one is a
disentangled attention mechanism, where each word is represented using two vectors that encode
its content and position, respectively, and the attention weights among words are computed using
disentangled matrices on their contents and relative positions. The second one is an enhanced mask
decoder, used to replace the output softmax layer to predict the masked tokens for model pretraining.
These two technics have proved to significantly improve the efficiency of model pretraining and
moreover increase the performance of downstream tasks.
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To do the finetuning of the DeBERTa-v2 model, as we couldn’t finetune all the weights due to
our VRAM limit, we decided to implement a pooler with a classifier and we added more capacity
by updating attention layer 11. As we can observe from Figure1, the update of attention layer 11
improves a great deal the model’s accuracy. The data used for the training of the reward model is the
reward model dataset, created as described above, and split into a training set (80%) and a validation
set (20%). We chose a maximum sequence length of 4096 tokens, as it fits well on the GPU used for
the training (an NVIDIA RTX 3090 of 24GB).

Figure 2: The accuracy of the model on the validation dataset with different learning rates

To choose the hyperparameters, we played with different values of learning rates (2e-5, 5e-5, and
1e-4) as you can observe from Figure2, and selected the best one. As for the reward loss, we went
with the one suggested in InstructGPT. Next, for the optimizer, we used the AdamW, a cosine learning
rate scheduler for 20 epochs, and a batch size of 2, which was the maximum achievable by our GPU.
The regularization with gradient clipping was set to 3 and finally, we used early stopping on validation
loss with patience set to 5.

3.3.2 Generative Model

For the generative model, we fine-tune GPT-2 [14] weights on our training generative dataset. It’s
a causal (unidirectional) transformer pre-trained using language modeling on a very large corpus
of 40 GB of text data. GPT-2 was trained with a causal language modeling (CLM) objective and is
therefore powerful at predicting the next token in a sequence. For this reason, we set the input of our
dataset to be of the form "<question> <eos> <answer> <eos>" where we force the model to ignore
loss for the question part in order to learn at predicting the next tokens for the answer part. To fit
the input of GPT-2, we truncate the inputs to a maximum of 1024 tokens. On the other hand, if the
number of tokens is below 1024, we fill the leftovers with pad tokens. We train the model for 100
epochs with AdamW optimizer, a learning rate of 1e-5, and a batch size equal to 4. We apply early
stopping with patience five based on loss on the generative model validation set.

3.4 Evaluation

To evaluate the quality of our generative model, we use both standard metrics and our reward model.
Upon generation of predictions from our test dataset both by our generative model and by ChatGPT,
using primary and more advanced prompting, we compute BLEU [12], ROUGE [9] and score from
our reward model.

Prompting: To generate predictions from ChatGPT, we use two types of prompting. For the first
type of prediction, ChatGPT is prompted with the question from the dataset without any additional
directions as to how it should answer it. The second type of prediction is generated from the prompt
“< question > Let’s think step by step...” to emphasize that the reasoning should be explained and
reduce computation mistakes.
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The dataset used for evaluation contains 1970 samples over which predictions from all three types of
strategies (GPT Basic, Advanced, and generations from our model) are generated. The reward score
is computed as the average of the scores over all the samples.

4 Results

The results of the evaluation are presented in Table 2. It shows that our model has poor quantitative
scores, considering BLEU and ROUGE metrics, especially compared to the ChatGPT variants. On
the other hand, considering the evaluation from the reward model, it performs better than the Basic
version of the ChatGPT model. We can draw a number of interpretations from these results.

First, the Advanced version of ChatGPT has ROUGE and BLEU results comparable to the basic
version. An examination of their predictions and their brevity penalty scores gives us some insights
as to why this might be the case. We can observe that the predictions of both the Advanced and Basic
models make mention of similar words and notions which are key to the question’s answer. However,
because of the way the Advanced model is prompted, it produces lengthier explanations, where it
gives more details about the steps needed to derive the desired result. These additional information,
although useful to a student, are not valued by the ROUGE and BLEU score which only measure
recall of specific n-grams (which, in our situations, are these “key word”).

Concerning our model, we can notice that its reward score is closer to the Advanced ChatGPT variant.
This can be seen as its generation being produced with a format similar to what we might want from
a chatbot that should help students with their questions. Yet, its ROUGE and BLEU score are lower
than both of the ChatGPT versions. It seems to have trouble identifying information relevant to the
answer to the student’s question.

Table 2: Results of the evaluation over the three models
Models ROUGE BLEU Reward Model’s Score

ROUGE 1 ROUGE 2 ROUGE L BLEU Brevity Penalty
Our Model 0.24 0.04 0.12 0.04 1.0 1.7
ChatGPT Basic 0.35 0.18 0.26 0.20 0.87 −0.1
ChatGPT Advanced 0.38 0.18 0.26 0.20 1.0 2.4

5 Contributions

Collecting demonstrations via ChatGPT: Juliette Parchet, Guillaume Vray and Léo Wolff.

Reward Model:

MATH dataset for reward model: Léo Wolff

Cheater dataset for reward model: Léo Wolff & Juliette Parchet

Loser dataset for reward model: Guillaume Vray

Reward model training: Juliette Parchet & Guillaume Vray

Generative Model:

Dataset: Juliette Parchet

Training: Guillaume Vray

ChatGPT Baselines: Léo Wolff

Evaluation: Léo Wolff

Final Report:

Abstract & Introduction: Juliette Parchet & Guillaume Vray

Related Work: Juliette Parchet

Method: Juliette Parchet, Léo Wolff and Guillaume Vray

Experiments & Results: Léo Wolff
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6 Conclusion

Our study focused on training a chat bot using machine learning techniques and evaluating its perfor-
mance compared to the baseline model, ChatGPT. We found that the trained tutor bot outperformed
ChatGPT when the latter was provided with trivial prompts, demonstrating its ability to generate
responses providing more insights to a student.

However, the trained Chat bot fell short of the performance achieved by well-prompted ChatGPT. This
limitation highlighted the importance of incorporating reinforcement learning with human feedback
to improve the formatting of the bot’s answers. By leveraging the reward model we developed, we
could have guided the bot towards generating responses that align more closely with desired formats,
enhancing its overall effectiveness as a personal tutor for EPFL students.

Furthermore, we identified some incoherence in the chat bot’s answers, which makes it important for
students using this technology to be attentive to the model’s output. Addressing these incoherences
represents a significant challenge, as they may require a deeper understanding of mathematical
concepts, which still remains a complex task for recent models. Nevertheless, with further research
and refinement, it is possible to enhance the bot’s coherence and correctness.

Lastly, we recognize that exploring alternative underlying models is a promising avenue to improve
the correctness of the Chat bot’s outputs. By investigating different architectures or incorporating
additional training data, we can enhance the bot’s ability to generate accurate and reliable responses,
which is crucial for its practical applicability as an educational tutor. A first path to explore could be
the use of GPT3 for our base model.

Overall, our findings shed light on the strengths and limitations of the trained Chat bot, highlighting
the potential for reinforcement learning with human feedback and model adjustments to further
enhance its performance. As technology continues to advance, addressing these challenges will
contribute to the development of more sophisticated and reliable conversational agents, fostering their
adoption in education and being conducive to an education fitted to each individual.
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